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Abstract

Using high‐dimensional genetic variants such as single nucleotide polymorphisms

(SNP) to predict complex diseases and traits has important applications in basic

research and other clinical settings. For example, predicting gene expression is a

necessary first step to identify (putative) causal genes in transcriptome‐wide
association studies. Due to weak signals, high‐dimensionality, and linkage

disequilibrium (correlation) among SNPs, building such a prediction model is

challenging. However, functional annotations at the SNP level (e.g., as epigenomic

data across multiple cell‐ or tissue‐types) are available and could be used to inform

predictor importance and aid in outcome prediction. Existing approaches to

incorporate annotations have been based mainly on (generalized) linear models.

Bayesian additive regression trees (BART), in contrast, is a reliable method to

obtain high‐quality nonlinear out of sample predictions without overfitting.

Unfortunately, the default prior from BART may be too inflexible to handle sparse

situations where the number of predictors approaches or surpasses the number of

observations. Motivated by our real data application, this article proposes an

alternative prior based on the logit normal distribution because it provides a

framework that is adaptive to sparsity and can model informative functional

annotations. It also provides a framework to incorporate prior information about

the between SNP correlations. Computational details for carrying out inference are

presented along with the results from a simulation study and a genome‐wide
prediction analysis of the Alzheimer's Disease Neuroimaging Initiative data.
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1 | INTRODUCTION

Prediction with high‐dimensional data is both important
and challenging. For example, in statistical genetics it is of
great interest to predict a complex trait or disease using
high‐dimensional genetic information, such as single‐
nucleotide polymorphism (SNP) data. Such a prediction
model, called polygenic risk scores (PRS), for a complex
disease can be a useful prognostic for disease prevention and
treatment development (Pattee & Pan, 2020). Alternatively,
predicting gene expression is a necessary first step to
illuminate (putative) causal genes in transcriptome‐wide
association studies (TWAS) (Gamazon et al., 2015; Gusev
et al., 2016), which motivated and will be the focus of this
study as shown in our real data example. Due to the high‐
dimensionality (e.g., the number of predictors/SNPs can be
large relative to the sample size), weak signals (i.e., the effect
sizes of the SNPs are quite small), and high correlations
among local/nearby SNPs, the problem is quite challenging.
However, there may be additional information about the
predictors that can be useful in extracting a usable signal.
For SNPs in particular, recent large‐scale functional
epigenomics studies, such as the NIH ENCODE and
Roadmap Epigenomics projects, provide rich resources to
characterize functional consequences of SNPs, especially
those in noncoding regions.

Using such functional annotation data could inform and
prioritize predictor importance and is an exciting prospect in
statistical genetics that is an active area of research (Liu
et al., 2020). There may be a relationship between the
annotation profile of an SNP and its importance as a
predictor of the outcome. These functional annotations
represent multiomic data obtained from various cell‐ and
tissue‐types and can be high‐dimensional. Most importantly,
for a specific problem, some of these annotations are
expected to be (weakly) informative while others are not,
but which annotations are informative and which are not is
in general unknown.

A popular way to annotate an SNP is to specify
whether it is an expression quantitative trait locus (eQTL)
(Chen et al., 2016; Lu et al., 2016), which may or may not
be useful depending on whether the corresponding gene
and the trait being considered are related. Thus, treating
all eQTL SNPs equally may not be the most efficient for a
given trait. Furthermore, the existing approaches are
mainly based on generalized linear models. How to
effectively incorporate high‐dimensional functional anno-
tations into more flexible nonparametric/nonlinear
modeling is an exciting frontier with potential to improve

the overall performance in many genetic contexts where
prediction is desired, motivating our real data analysis.

Regression tree ensembles have been an increasingly
popular method for obtaining reliable and high‐quality
predictions for nonlinear relationships. In particular,
Bayesian Additive Regression Trees (BART) has shown a
great deal of potential because of its sample prediction
accuracy and avoidance of overfitting (Chipman et al.,
1998, 2010). BART, as its name suggests, is based on a
framework of Bayesian probability and so inference is
carried out using Markov‐Chain Monte Carlo (MCMC)
sampling (Tierney, 1994). This probability framework
means that the uncertainty estimates and intervals for
any unknown quantity, including transformations of
unknown quantities, are readily available from the
posterior distribution. This is in contrast to other regres-
sion tree methods. Additionally, extending a BART model
to handle more complicated data or incorporate additional
flexibility is usually possible, sometimes trivially so, with a
hierarchical Bayesian specification, as done in this article.

BART, in the traditional formulation, however, may
have difficulty if the data exhibit sparsity. The prior
probability used for predictor choice within the splitting
rule is not flexible enough for sparse situations and can
display poor behavior. This is shown in Linero (2018) who
also offers a method for increasing the flexibility of this
probability. The method modifies the standard BART
prior, which sets equal the probability of predictor
selection in the splitting rule, to instead be modeled using
a Dirichlet distribution (DART). This yields a regression
tree ensemble that is adaptive to predictor sparsity and
allows it to focus on the important predictors while
ignoring the unimportant ones. However, the Dirichlet
prior is somewhat inflexible, requiring that the variable
selection probabilities are “almost” independent.

Aiming to improve the performance with our real data,
this article presents the logit normal prior as an alternative to
the standard BART prior or Dirichlet prior. The logit normal
allows for correlations between the inclusion probability of
the predictors to be incorporated, assuming prior informa-
tion. Additionally, because of its relationship to the normal
distribution, the logit normal prior is a natural choice to
incorporate the functional annotations using a hierarchical
logit link. Therefore, this prior can solve both problems at
once: the inflexibility of the Dirichlet distribution and
accounting for the functional annotations. Finally, this prior
is computationally tractable because the posterior distribu-
tion can be sampled efficiently using the Pólya‐gamma (PG)
augmentation technique of Polson et al. (2013), similar to the
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augmentation strategies for probit (Albert & Chib, 1993) and
logistic (Held & Holmes, 2006) links. The overall idea of the
methodology as applied to this article is presented in
Figure 1. The outcomes y inform the terminal node values
while the predictors X and the functional annotations A

inform the splitting rules in the interior nodes. Taken
together this model can provide the posterior distribution for
outcome predictions ŷ, Bayesian model selection criteria,
and the fine‐mapping of SNPs for prediction using the
characteristics of the tree ensemble.

The logit normal prior is incorporated into the overall
BART algorithm, resulting in a nonlinear prediction

method that is grounded entirely in Bayesian probability.
Furthermore, this prior can be incorporated into
BART for any type of outcome including probit, logistic,
survival (Sparapani et al., 2016), competing risks
(Sparapani et al., 2020), recurrent events (Sparapani
et al., 2020), and repeated measures/random effects
(Spanbauer & Sparapani, 2021; Tan et al., 2018) resulting
in broad applicability of this method.

In Section 2, a brief overview of the BART and DART
methods is presented. In Section 3, the logit normal prior
and its MCMC sampling strategies are developed.
Section 4 presents a simulation for the methodology

FIGURE 1 Depiction of the workflow for performing a genome‐wide scan using BART while also incorporating the functional
annotations. Note how the outcome Y affects the terminal node values, while the predictors and annotations, X and A, affect the
splitting rules for the interior nodes.
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and Section 5 presents its application to genome‐wide
prediction and demonstrates its usefulness. Finally, these
results and future work are discussed in Section 6.

2 | BAYESIAN ADDITIVE
REGRESSION TREES OVERVIEW

BART is a Bayesian nonparametric ensemble learning
method for nonlinear regression. In the continuous
case, BART seeks to model regression relationships of
the form

xy f= ( ) + ϵ ,i i i

for i n= 1, …, , where x x x= ( , …, )′i i ip1 and ∼ϵi
iid
N σ(0, )2 .

The quantity of interest to be estimated in this case is
simply x xf E y( ) = [ ]i i i . In the case of binary outcomes
∈y {0, 1}i , a probit or logistic link can be used so

that xf ( )i can be transformed to the scale of xE y[ ] =i i

∈xP y( = 1 ) (0, 1)i i .
In the following section, the prior specification and

posterior sampling for BART are briefly discussed with
emphasis placed on the predictor choice prior. The
interested reader can refer to Chipman et al. (2010) for a
more detailed treatment of BART.

2.1 | BART priors and MCMC inference

The two unknown quantities in the BART model are f

and σ2. Because these quantities are unknown, MCMC

sampling will be performed and inference carried out on
the sampled posterior distribution.

The variance prior uses a scaled inverse chi‐squared
distribution, alternatively parameterized as the inverse‐
gamma distribution. The degrees of freedom hyperpara-
meter is set to a reasonable value (i.e., integers from 1
to 5), while the scale parameter is set so that a rough data‐
based estimate of σ2 is at the 0.95 percentile of the prior
distribution, to scale the before plausible values of σ2

within the context of the data, though other percentiles
can be specified as necessary. Alternatively, cross‐
validation can be performed to select both the degrees of
freedom and percentile. The data‐based estimate can be an
estimate of σ2 in a linear regression model or the sample
variance of the outcome itself. In general, the sample
variance is used when the number of coefficients to be
estimated eclipses the number of observations and so it is
not possible to fit the linear model.

The prior on f is represented as the sum of H

constant piecewise‐defined functions called regression
trees. Regression trees recursively partition the predictor
space into regions inside each of which the expected
value of the outcome is estimated. This assumption is
formulated as

≈ x xf g T( ) ( ; , ),i

h

H

i h h

=1



where h H= 1, …, is indexing the trees in the ensemble,

h represents the partition of the x space as defined by
tree h, and h represents the terminal nodes at the
bottom of tree h. A toy example of this is given in

FIGURE 2 Toy example depicting a
regression tree ensemble with H = 3 along with
the resulting partition of the predictor space.
The numbers on the right are the values in each
partition of the predictor space after adding the
appropriate terminal node values on the left.
The horizontal lines at 0.25 and 0.75 represent
the partitions in x2 while the vertical lines at 0.3,
0.5, and 0.7 represent the partitions in x1 . This
demonstrates how regression tree ensembles
can reliably estimate nonlinearity and
interaction.
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Figure 2. This prior is further simplified by assuming that
each tree is independent of the other trees. Placing a
prior on f now reduces to simply placing a prior on each
( , )h h  pair for all h. This pair is decomposed into h
marginally and then h h  because the number of
terminal nodes depends on the tree structure. This same
prior is applied to all H trees.

There are three major components to the prior on h ,
that is, the structure of the tree. These include the
probability of a node splitting at a particular depth,
the probability of which predictor to select for use in the
splitting rule, and the probability of selecting a particular
cutpoint of the selected predictor for the splitting rules.
In many cases, the default settings described below work
very well. However, in certain scenarios, such as
predictor sparsity with high‐dimensional data, modifying
one or more default settings can be useful.

The probability of a node splitting at a particular
depth defaults to δ d α λ( ) = (1 + ) d− , where d represents
the depth of a particular node starting at 0 for the head
node. By default, α = 0.95 and λ = 2. Note that the
default values of δ d( ) are set in such a way that the trees
are kept shallow, for example, trees at or beyond depth 3
are rare, though splits at the top of the tree are common.
Keeping the individual trees from explaining too large a
portion of the outcome variability is how the BART prior
performs regularization. Regularizing guards against
overfitting because, while the entire ensemble can
explain a large portion of the variability in the outcome,
the individual trees cannot. As such, predictions from the
entire ensemble have a lower variance than single tree
models, thinking in terms of the bias‐variance tradeoff.

The probability of selecting a particular cutpoint is set
to be equal within an equidistant grid for each predictor.
There are other contexts where choosing this in a
different way can be helpful, but in this context the
default behavior is acceptable. Note that, from a
computational standpoint, binary predictors can be
treated exactly the same as continuous ones. However,
nominal predictors with more than one category will
need to be transformed into binary dummy predictors.
Ordinal predictors can be treated as continuous or
nominal depending on the situation.

The final component of the regression tree is the
choice of predictor for each interior node. Because this is
the focus of the modifications described in the article, we
introduce some notation. Let v v v= ( , …, )′R1 represent
the indices of the chosen covariates at each interior node
that is indexed by r R= 1, …, . The vector s s s= ( , …, )′p1 ,
where  s = 1j

p
j=1 defines the probability of predictor

choice. For standard BART, ∕s p= 1j for all j. In this way,
each predictor is considered equally important. However,

note that it places zero prior probability at any other
point, that is, ∕P s p( = 1 ) = 1j , so the resulting value of sj
in the posterior distribution cannot be anything other
than ∕p1 for all j. The ensemble is then unable to adapt
itself to any predictor importance that could be learned
from the data because of this restrictive prior. Section 2.2
describes the Dirichlet distribution as an alternative
(Linero, 2018).

The terminal node values in tree h are represented
by the vector ( )μ μ= , …, ′h h h L,1 , h

 , where Lh is the

number of terminal nodes in the tree. Given a tree
structure h , the h elements utilize a normal prior
centered around 0 with a standard deviation that scales
with the number of trees to take into account the fact
that the terminal node values of the ensemble are being
summed. This is again reflective of the BART prior
regulating each tree so that it only explains a small
portion of the variability in the outcome.

The entire MCMC algorithm for drawing f can then
be described in two steps, repeated across the trees. For
h H= 1, …, : draw h using Metropolis–Hastings condi-
tional on the other trees and then draw h h  using
conjugate Gibbs conditional on the other trees. The
residual ≠ xy g−

′
( ;

′
,

′
)i h h i h h  is used to condition

on all trees other than tree h (as well as the data y),
reflecting the additive nature of the tree ensemble. This is
known as “Bayesian backfitting.”

2.2 | Dirichlet prior for variable
selection using BART

There are a few different approaches to handling sparsity
using BART, most of which involve the makeup of the
splitting rules in the regression tree ensemble. One strategy
to solve this problem is to reduce the number of trees H ,
thereby forcing the regression tree ensemble to only utilize
those predictors that have the strongest association with the
outcome. However, reducing the number of trees can lead
to a reduction in predictive performance. There are also
methods based on deriving a permutation distribution for
the makeup of the regression tree ensemble after reducing
the number of trees (Bleich et al., 2014), but the
permutations increase the computational burden. In
general, these methods rely on non‐Bayesian quantitative
measures that are computed post‐hoc. Ultimately both of
these methods are unsatisfying solutions if one requires
both prediction and variable selection in an analysis. BART
with a Dirichlet prior (DART) is a computationally tractable
solution that can do prediction and variable selection
simultaneously while not straying from the framework of
Bayesian probability and MCMC inference (Linero, 2018).
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Spike‐and‐slab type priors are another Bayesian solution
that have been used within the BART framework (Ročková
& van der Pas, 2017).

DART is useful in the case of predictor sparsity because
the regression tree ensemble is able to adapt to the important
predictors while ignoring the unimportant ones. The
Dirichlet prior is also convenient because it is conjugal to
the multinomial distribution so that adapting the MCMC
algorithm to use this prior is trivial. This can be seen by
considering the counts of splits on each predictor throughout
the ensemble. Let r R= 1, …, index the interior nodes of the
ensemble and let ∈ ∼ sv p{1, …, } Mult (1, )r , also defined
in Section 2.1, be the choice of predictor for node r . Define
c c c= ( , …, )′p1 as the vector of index counts with elements

c I v j= ( = )j r
R

r=1 , where ⋅I ( ) represents the indicator
function. Then c s sR~ Mult ( , ) and ∼ ∕s θ pDir ( ,

∕θ p…, ) implies that ∼ ∕ ∕s c θ p c θ p cDir ( + , …, + )p1 .
Here, θ is a global sparsity parameter. In the DART method,
the prior of the sparsity parameter is set so that
∕ ∼θ θ ρ a b( + ) β( , ) where ρ p= usually. This is equiva-
lent to placing a β‐prime prior scaled by ρ on θ itself (or
equivalently, a standardized β‐prime prior on ∕θ p if ρ p= ).

3 | THE LOGIT NORMAL PRIOR
FOR SPARSITY

The Dirichlet prior does not allow the components of s to
have a flexible correlation structure. Because of this, each
predictor is chosen at the expense of the others which

may be unhelpful, particularly if collinearity is an issue.
The logit normal distribution is an attractive alternative
because it has the flexibility to model this type of
correlation structure and it provides a natural framework
for incorporating the functional annotations. Addition-
ally, this prior can easily be used in conjunction with
the existing BART MCMC sampling strategy. While
the MCMC scheme is slightly more involved than that
of the Dirichlet prior, it is still a computationally
tractable procedure using augmented PG sampling
(Polson et al., 2013). In this section, an overview of the
logit normal distribution, the hierarchical formulation of
the model that incorporates the annotation data, and
directions on how to incorporate this prior into BART are
all given.

3.1 | Logit normal overview

For the logit normal prior, the splitting probabilities are
now defined as

≠s
ψ

ψ
=

exp( )

1 + exp( )
,j

j

j p j′ ′
(1)

where the p‐length vector ψ ψ ψ= ( , …, )′p1 follows a

multivariate normal distribution. The name “logit
normal” becomes clear from Equation (1): the logit
of s gives you a normal variate, in this case, ψ. Note
that to avoid identifiability problems, ψ = 0p , though

the choice of p as this index is arbitrary. The way the

FIGURE 3 Contours for the pdf of a normally distributed bivariate random variable ψ in the top row and the corresponding contours
from the pdf of a three‐category logit normal random variable s. For all five columns the mean of the normally distributed variables is
(0.5, 0) . The variances for the first three columns are 1, 4, and 0.25, respectively and the two elements of ψ are independent. For the fourth
and fifth column, the correlation between the two elements of ψ is 0.5 and −0.5, respectively, with variance of 1 for both.
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density of the logit normal is affected by the density of
the underlying normal random variate is shown in
Figure 3.

However, the logistic likelihood induced by Equation
(1) combined with a normal prior leads to a posterior
distribution without closed form (Bishop, 2006). Accord-
ingly, data augmentation using the PG distribution can
be used to perform MCMC inference through Gibbs
sampling (Polson et al., 2013). The most common
application of this is Bayesian logistic regression.
However, this sampling strategy is possible whenever a
model specifies a logit link hierarchically, including a
dichotomous logit link as defined above. See Section 3.3
for details.

3.2 | Incorporating functional
annotations

The annotations are incorporated into the model through
the expectation of ψj . In the case without annotations, let
ψ η=j j, where ∼η τN (0, )j

2 with η = 0p for identifia-

bility. Here, ηj represents the random noise of predictor

j in terms of its variable selection probability. In this
case, ∼ψ m τN ( , )j j0

2 with m = 0j0 .

To incorporate a vector of annotations for predictor j,
call it a a a= ( , …, )′j j jT1 , let a βψ β η= + ′ +j j j0 for

β β β= ( , …, )′T1 , where T is the total number of annota-
tions. The interpretation of βt is the increase in ψ per one
unit change in annotation t . Again, for identifiability,
note that ψ = 0p and η = 0p . The ramifications of this are

discussed in Section 3.3.3. Of course, any predictor index
∈j p{1, …, } can be chosen without loss of generality.

Now let ∼ψ m τN ( , )j j0
2 , but a βm β= + ′j j0 0 to take the

annotations into account.

As with DART, the method learns about s through c
and v which themselves are learned from the original
data and the relationship between the outcome and
predictors. Under the logit normal prior, the method
learns about ψ (and hence s) through c and v in a similar
manner. However, by learning about ψ and conditioning
on the annotations A, we can learn about β (and the
variance term τ2). This is how the annotation data is
incorporated into the model.

Note that in this formulation of the prior, the
elements of ψ are specified as independent. However,
it is also possible to specify a correlation structure for
ψ in the prior. This can be done through a stick‐
breaking formulation of the dichotomous likelihood
(Linderman et al., 2015). For statistical genetics, this
may be useful to model the linkage disequilibrium
between SNPs if such prior information is available.

In this way, η N τ~ (0 , Σ )ψp p−1 −1
2

0 where the
covariance matrix Σψ0 is specified by the analyst. This
could be useful when sets of predictors are known to
be correlated with regard to their inclusion probabil-
ity. It is unlikely that the single realization of vector ψ
would be informative enough to estimate their general
covariance structure. However, incorporating such
structure a priori is possible using the above frame-
work. As an example, one could use an autoregressive
structure based on genetic location for Σψ0 .

3.3 | MCMC sampling

The unnormalized posterior distribution for this
model is a multinomial logistic likelihood multiplied
by a multivariate normal distribution on ψ, which is
obviously nonconjugate. This system defines a true
probability distribution, but is not tractable without
expanding the likelihood using auxiliary variables.
These auxiliary variables allow the unknown parame-
ters ψ to be estimated using a Gaussian update so that
the exact posterior can be sampled. Many methods for
sampling such a posterior involve auxiliary variables,
but this method is almost always more efficient
(Polson et al., 2013) than other auxiliary MCMC
methods such as Frühwirth‐Schnatter et al. (2009),
Gramacy and Polson (2012), and Held and Holmes
(2006).

3.3.1 | The PG distribution

The basic identity that allows for this auxiliary sampling
scheme to work is

∞
∕e

e
e e p ω dω

( )

(1 + )
= 2 ( )

M a

M b
b κM ωM−

0

− 22

(2a)

∕[ ]e E e= 2 b κM
ω

ωM− − 22

(2b)

where ∼ω bPG ( , 0) and ∕κ a b= − 2. Equations (2a)
and (2b) imply that logistic likelihoods can be repre-
sented as mixtures of normal distributions with respect to
the PG distribution. In particular, note that Equation (2b)
represents an "exponential‐tilting” of ω which results in a

b MPG ( , ) random variable. Therefore, Bayesian linear
models with a hierarchical logit link function can be
sampled using conjugate Gibbs updating, provided there
is an easy way to sample from the auxiliary PG b M( , )

random variates. Fortunately, such a sampler using an
acceptance–rejection algorithm exists due to the Baye-
sLogit R package (Polson et al., 2019).
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3.3.2 | PG augmentation for sampling ψj

In terms of the logit normal prior described in this
article, the likelihood is dichotomous where each
predictor represents a “category.” The data are repre-
sented by the counts of the splitting rules in the
regression tree ensemble cj with R c= j

p
j=1 . According

to Held and Holmes (2006), the dichotomous likelihood
as applied to this model is

ψ cL ψ
e

e
( , ) =

( )

(1 + )j j

ψ ϕ c

ψ ϕ R−

−

−

j j j

j j
(3)

with ≠ϕ e= log( )j j j
ψ

′
j′ . Note that ϕj depends only on

ψ j− and not ψj . Applying Equations (2a) and (2b),

sampling the auxiliary PG variate can be done as
 ψ cω ψ R ψ ϕ, , PG ( , − )j j j j j−  .

To sample from  ψ cψ ω , ,j j j− , Equation (2b) is multi-

plied by the prior distribution of ψj . Because this step

conditions on ωj , the expectation evaluates to its
argument. Also, note that ∕κ c R= − 2j j . Therefore, the
posterior distribution of ψj can be written as a product of

exponentials, and completing the square will yield a
Gaussian update for ψj given by

∼ψ cψ ω m V, , N( , ),j j j j j− (4)

where V =j
τ

ω τ + 1j

2

2 and m =j
m τ κ ω ϕ

ω τ

+ ( + )

+ 1

j j j j

j

0
2

2 .

3.3.3 | Gibbs update for the annotation
model

The information in the annotations is incorporated using
a hierarchical regression model with a logit link. First,
note that the model here is a βψ β η= + ′ +j j j0 and both

ψ = 0p and η = 0p for identifiability. This implies that the

regression hyperplane at point ap passes through ψ = 0p .

Such a model can be estimated by centering the
annotations around ap . Compute a a a~ = −j j p so that
a 0˜ =p T and set β = 00 . Then, perform no‐intercept
regression on the centered annotations to estimate β
which is unchanged in interpretation after this transfor-
mation. Then the model becomes a βψ η= ˜ +j j j , though

it can be shifted back to the original scale of the
annotations to compute β0 if desired.

Let Ã denote the p T( − 1) × matrix of annotations.
Let ψ p− denote the vector of ψj where ≠j p and let Ã p−

denote the matrix Ã where row p is omitted. To estimate
β we use a normally distributed and independent prior as
β vN I~ (0 , )T T β T0 where vβ0 is some constant in the
diagonal variance–covariance matrix. Of course, the prior
for β can also be correlated, but that is not considered
here. Then, sampling β can be done as

∼β ψ A m Vτ N ,, , ˜ ( , )p p T β β−
2

− (5)

where


 


V =

v A A

vβ
τ I

τ

˜ ′ ˜ +
−1

β p p T

β

0 − −
2

0
2 and ( )m V= A ψβ β τ ˜ ′

p p
−2

− −
.

Estimating τ2 is also simple with two reasonable
choices of prior. Either the traditional inverse‐gamma
prior on τ2 or the scaled half‐T prior on τ can be used.
The scaled half‐T distribution is equal to the scaled
absolute value of a T random variable. These priors
are well‐discussed in the Bayesian community
(Gelman, 2006; Polson & Scott, 2012). The scaled
half‐T distribution has heavier tails, allowing for a
higher degree of sparsity in the prior. Additionally, the
limit of the density function (from the right) goes to a
finite nonzero value for τ = 0 with the scaled half‐T,
allowing it to plausibly revert back to nonsparse
situations. The authors recommend the scaled half‐T
prior because of these considerations. The posterior

MCMC update will rely on  ( )a βRSS ψ= − ˜′j
p

j j=1
−1 2

and

is trivial to derive in either case.
The software is given by an R package, entitled

sparseBART at https://github.com/cspanbauer/
sparseBART. This implementation is based on two
previously existing packages: bayesLogit and
BART3 which efficiently implement the PG (Polson
et al., 2019) and BART (Sparapani et al., 2021)
samplers respectively. As such, there is essentially no
significant computational differences between tradi-
tional BART, the Dirichlet prior of DART, and the logit
normal prior of this article. The exception to this is
when the number of annotations T becomes large. This
is because sampling ψ requires inversion of a T T×

matrix at each MCMC iteration.

4 | SIMULATION

A simulation study was used to evaluate the effectiveness
of the different priors among the BART prediction
methods, as well as other prediction methods. The
methods used are the logit normal prior w/annotations
(LN‐A), the logit normal prior w/o annotations (LN‐0),
DART, BART, random forest (RF) (Breiman, 2001), and
support vector machine (SVM) (Cortes & Vapnik, 1995).
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The criteria used to evaluate out‐of‐sample prediction
accuracy is R2. The simulation was modeled after gene
SLC24A4.

The true model is xy f= ( ) + ϵi i i , where ∼ϵi
iid

xN V f(0, ( ( ))i , where xV f( ( ))i is determined via
Monte‐Carlo simulation of xi and its transformation
using the true f . This implies that the true function f

explains half of the variability in the outcome. For the
predictors, x x x= ( , …, )′i i ip1 , where ∈x {0, 1, 2}ij for
i n= 1, …, and j p= 1, …, , mimicking SNP data for the
gene SLC24A4. The SNP minor allele frequencies as
observed in the ADNI data from Section 5 are used to
simulate these predictors and make up a mix of rare and
common variants. The number of predictors is varied as a
simulation setting so that ∈p {100, 250, 529} , where 529
is the total number of SNPs in the cis‐region for SLC24A4
in the ADNI data set after adjusting for quality.
Accordingly, the sample probabilities from real genetic
data are used to inform the generation of the simulated
data. The correlation structure of the SNPs is also varied
between strong and weak correlations. For strongly
correlated SNPs, the correlation is simulated as a draw
from the inverse‐Wishart p I( , )p distribution where Ip
represents the p p× identity matrix. For weakly corre-
lated SNPs, the correlation is simulated as a draw from
the inverse‐Wishart p I(10 , )p distribution. T = 30 anno-
tations are used for the p simulated cis‐SNPs in gene
SLC24A4. The annotations used in this simulation and
those used in the ADNI real data analysis of Section 5 are
a subset of the full set given by Pickrell (2014).

Then, the ψj are simulated from the model specification
according to ∈τ {1, 5, 10}2 which yields three simulation
settings: antisparse, moderately sparse, and extremely
sparse. While there is considerable variability between
simulation iterations, the antisparse setting results in at
least 50% of the p SNPs to have some predictive effect, the
moderately sparse setting results in roughly 5% to have
some predictive effect, and the extremely sparse setting
results in less than 1% of them to have some predictive
effect on the simulated gene expression.

The true values of β form two simulation settings.
The first is a setting where the annotations do not
influence the variable importance, that is, β = 0t for
t T= 1, …, . The second is a setting where the annota-
tions are informative where β = 5t for the first 10
annotations, β = −5t for the next 10 annotations, and
β = 0t for the last 10 annotations. While five seems
quite large for a regression coefficient, it is not large in
relation to τ2, particularly the sparse settings which is
what this article is concerned with. The variability of ψ
is predicated on the amount of sparsity in the data and
so large values for τ2 and βt are plausible in sparse
situations.

Once sj is simulated, the sj are used as

coefficients for the true f . In this way, the sj imitate
variable importance. A nonlinear true f is considered
as xf s f x( ) = 0.5 ˜ ( ) + 4.5i j

p
j j i j=1 , , where the final

scaling and shifting is applied so that the simulated
outcome approximates the observed gene expression
outcome from ADNI. Because BART is designed
to estimate nonlinear regression relationships, the
individual f x˜ ( )j i j, are nonlinear additive “pieces” to

the overall function, defined below. There are 10
additive pieces that are recycled over each of the p

SNPs so that ⋯f x f x f x˜ ( ) = ˜ ( ) = ˜ ( ) =i i i1 ,1 11 ,11 21 ,21 and
⋯f x f x˜ ( ) = ˜ ( ) =i i2 ,2 12 ,12 , etc. In this way, function f1 is

the same as f f, , …11 21 , and function f2 is the same as
f f,12 22 , and so on. These 10 recycled functions, all of
which exhibit nonlinearity, are

A sample size of n = 500 is used, approximated from
the training data used in ADNI. An extra 1000 out of
sample observations are simulated to evaluate the
performance. Ten thousand MCMC samples were
generated for each of the BART‐based methods with
the first half being discarded for burn‐in and every fifth
sample from the second half kept as a posterior sample
for a total of 1000 posterior draws. Otherwise, default
settings were used for the other BART settings as well as
the other methods RF and SVR. The simulation study

≠

( )

f x π x f x x x

f x x f x x

f x x f x π x

f x I x f x x x

f x I x f x I x π x

I x π x

˜ ( ) = sin( ( − 1)) ˜ ( ) = −

˜ ( ) =− ˜ ( ) =−log( + 1)

˜ ( ) = exp( ) ˜ ( ) = cos( ( − 1))

˜ ( ) = ( < = 1) ˜ ( ) =− − 1

˜ ( ) = ( > = 1) ˜ ( ) = ( 0)sin( ( − 1))

− ( = 0)sin( ( − 1)).

i i i i i

i i i i

i i i i

i i i i i

i i i i i

i i

1 ,1 ,1 6 ,6 ,6
2

,6

2 ,2 ,2
2

7 ,7 ,7

3 ,3 ,3 8 ,8 ,8

4 ,4 ,4 9 ,9 ,9 ,9
2

5 ,5 ,5 10 ,10 ,10 ,10

,10 ,10
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was performed over 500 data sets. Out‐of‐sample R2 is
used as the criteria for evaluating the performance of
each method. The results are displayed in Tables 1 and 2
for strongly correlated SNPs and weakly correlated SNPs,
respectively.

First, it appears that the BART‐based methods
outperform RF and SVM across the simulation settings.
Additionally, the logit normal prior without annotations
is comparable or slightly better than DART, possibly as a
result of the ability of the logit normal before take the
correlation among the SNPs into account. This appears to
be especially true when the annotations are uninforma-
tive. With uninformative annotations, the sparsity‐based
methods appear to outperform standard BART in the
extremely sparse setting where τ = 102 , but do not
outperform BART in the antisparse setting where
τ = 12 . The results from the moderately sparse setting,
τ = 52 , differ depending on whether the predictors are
correlated or not. For τ = 52 , the sparse methods do
better when the simulated SNPs are weakly correlated. In
the strongly correlated case, there is no clear winner.
With informative annotations, the sparsity‐based meth-
ods appear superior in all cases. Finally, accounting for

the annotations appears to offer a performance improvement
when the annotations are informative while not hindering
performance when the annotations are uninformative. This
is particularly evident in the p = 529 case, though the same
pattern exists for p = 250 and p = 100.

5 | GENOME ‐WIDE SCAN
USING ADNI

Data used in the preparation of this article were
obtained from the Alzheimer's Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). The
ADNI was launched in 2003 as a public–private
partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression
of mild cognitive impairment (MCI) and early Alzhei-
mer's disease (AD). ADNI “is a longitudinal multicen-
ter study designed to develop clinical, imaging,

TABLE 1 Out of sample R2 averaged over the 500 simulation results for all simulation settings with moderately or strongly
correlated SNPs

Inform. p τ2 LN‐A LN‐0 DART BART RF SVR

No 100 1 35.21 35.85 35.65 36.63 31.48 29.42

No 100 5 41.85 42.14 41.84 41.96 39.40 33.39

No 100 10 42.03 42.51 42.29 40.25 39.98 30.43

No 250 1 35.14 35.60 35.24 37.32 34.82 33.19

No 250 5 37.57 38.12 37.45 39.81 37.74 36.63

No 250 10 40.17 40.33 40.15 37.70 31.70 23.55

No 529 1 31.35 32.32 31.11 33.30 32.69 31.28

No 529 5 37.28 38.39 37.38 38.62 34.52 32.40

No 529 10 47.80 47.69 47.45 44.27 46.48 17.09

Yes 100 1 46.23 46.02 46.02 42.02 42.63 31.62

Yes 100 5 51.01 50.74 50.66 45.88 46.84 28.71

Yes 100 10 48.63 48.40 48.40 44.27 45.12 32.62

Yes 250 1 48.16 47.62 47.48 42.88 44.63 35.60

Yes 250 5 50.74 50.39 50.23 46.85 44.25 42.47

Yes 250 10 48.29 47.76 47.61 42.56 44.96 35.31

Yes 529 1 47.39 46.41 46.00 42.59 44.09 35.70

Yes 529 5 47.46 45.99 45.90 45.20 42.69 43.82

Yes 529 10 45.91 45.05 44.68 41.34 43.15 33.94

Note: The first three columns give the simulation settings while the next six columns give the different methods. Informative means that the SNPs had
informative annotations, that is, the coefficients in vector ≠β 0.
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genetic, and biochemical biomarkers for the early
detection and tracking of AD” (Mueller et al., 2005).
Additionally, Shen et al. (2014) provide a review paper
on ADNI for those interested.

Genome‐wide prediction (GWP) (Meuwissen
et al., 2001) is becoming increasingly popular with
many studies exploring the use of different prediction
methods in a GWP setting (de los Campos et al., 2013;
Howard et al., 2014; Okser et al., 2014), including
BART (Waldmann, 2016). Many of these models
emphasize sparsity which is a valuable property for
a model in this situation because it is common for
there to be a large number of SNPs relative to the
sample size.

In this section, SNPs from the cis‐region of each
gene are used to predict the genetic expression levels
using standard BART as well as the sparsity‐based
priors discussed in this article. This is an ideal setting
to demonstrate the utility of these methods because
certain genes may have a large number of SNPs in
the cis‐region. Functional annotations are used to
guide the selection of SNPs in the regression tree
ensembles.

5.1 | Prediction of gene expression
using SNPs

Representing the genes are 45,040 probesets, all of them
matching with one of 18,014 gene IDs. For each gene ID
within chromosomes 1 through 22, the ADNI genotyping
data was extracted from the cis‐region with 50,000 bp on
either side of the region using the PLINK v. 1.07 software
(Purcell et al., 2007). Any SNPs with an HWE p value less
than 0.001 and minor allele frequency less than 0.01 (rare
variants) were removed. Additionally, only SNPs with a
genotyping rate greater than 0.1 were kept. Certain genes
had no selected cis‐SNPs because there were no annota-
tions measured for those variants. In total, 16,911 unique
gene IDs were analyzed from the probesets.

Seven functional annotations (Pickrell, 2014) were
extracted from the total set of annotations. These
annotations include transcription start site distance
(TSSdist) which is continuous along with binary indica-
tors for nonsynonomous mutations, UTR3 and UTR5
exons, coding and noncoding exons, and K562 repressors.
The SNPs were matched to the functional annotations
and any SNP that did not have functional measured

TABLE 2 Out of sample R2 averaged over the 500 simulation results for all simulation settings for weakly correlated SNPs

Inform. p τ2 LN‐A LN‐0 DART BART RF SVR

No 100 1 32.76 33.47 33.00 35.33 23.51 23.50

No 100 5 39.30 39.51 39.46 36.59 33.53 23.78

No 100 10 40.87 40.92 40.98 37.46 34.74 21.36

No 250 1 21.77 22.76 22.03 25.74 14.64 15.51

No 250 5 32.02 32.29 31.73 29.29 25.91 13.91

No 250 10 44.06 43.99 44.14 38.16 32.63 15.56

No 529 1 9.79 11.61 9.59 13.46 7.13 7.82

No 529 5 21.61 21.93 21.50 20.03 15.77 8.10

No 529 10 38.11 38.15 37.74 30.49 35.79 8.91

Yes 100 1 48.44 48.05 48.07 42.50 46.73 25.27

Yes 100 5 47.73 47.19 47.24 41.87 46.69 25.24

Yes 100 10 50.21 49.81 49.81 44.02 47.20 25.46

Yes 250 1 49.62 48.89 48.73 42.49 47.20 15.73

Yes 250 5 46.77 45.89 45.78 39.31 45.58 15.21

Yes 250 10 47.34 46.48 46.43 40.45 47.41 15.43

Yes 529 1 48.23 46.48 46.40 39.18 44.38 12.26

Yes 529 5 50.34 48.85 48.60 42.59 48.23 12.09

Yes 529 10 48.70 47.23 47.19 41.14 46.32 12.18

Note: he first three columns give the simulation settings while the next six columns give the different methods. Informative means that the SNPs had
informative annotations, that is, the coefficients in vector ≠β 0.
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annotations were not used. This consisted of roughly
353,491, or 19.7%, removed from of the total 1,793,315
SNPs. If, for a given set of SNPs, any of these annotations
had zero variation (i.e., only a single unique value), they
were not considered for that gene.

Across these 16,786 genes, the mean and median
number of cis‐SNPs (i.e., p) was 99.6 and 74, respectively
while the first and third quartiles were 40 and 118. The
average and median genetic length in kilo‐base pairs
(kbp) was 60.0 and 21.9 kbp while the first and third
quartiles was 7.0 and 60.2 kbp. For all data sets, the
sample size is n = 626.

A variety of methods were used for prediction: a null
method, BART, DART, the logit normal prior without
annotations (LN‐0), and the same logit normal prior with
the set of seven annotations (LN‐A). For these methods,
there were 1000 burn‐in MCMC iterations and another
800 MCMC iterations drawn across three chains. This
yielded a total of 2400 draws from the posterior
distribution. Though a smaller number of MCMC
iterations are used in comparison to the simulation
study, our model selection criteria (described in the next
section) appeared to converge based on its Monte‐Carlo
error. Therefore, this appeared to achieve reliable
estimation while not being too computationally onerous.

The null method consists of fitting a Bayesian model
with a null regression relationship for the SNPs. Only
the random noise variance is estimated using an IG
(0.01, 0.01) , or inverse‐gamma, prior. Comparing a
predictive model with the results from this model
evaluates the predictive ability of that model and is the
strategy employed here. The annotation coefficients had
an independent normal prior and each coefficient had a
variance of 100 to make the prior uninformative. The
variance of the annotation error, τ2, used a half‐T prior
with scale 1 and degrees of freedom 3.

5.2 | Bayesian model selection

While Pareto smoothed importance sampling (PSIS)
can be applied and used with any importance
sampling algorithm, Bayesian leave‐one‐out (LOO)
cross‐validation is a major use case for it (Vehtari
et al., 2017). Combining these two yields the acronym
LOO‐PSIS. The output from LOO‐PSIS is the expected
log predictive density, and is formally defined
as  yp yELPD= log( ( ))i

n
i i=1 − , where y i− represents

the vector not including observation i. Computing
the above for each i (and for each gene) would be
computationally prohibitive, particularly with BART.
However, importance sampling can be used instead.
This is due to the following identity:

∕ yp y E p y θ( ) = ( [1 ( )])yi i θ i−
−1

where θ represents the parameters of a given model.
An intuitive estimator of the above quantity can

be computed without refitting the model: μ =MC

∕  ( )1
W w

W

p y θ

1
=1

1

( )i
w( ) where w W= 1, …, indexes the

MCMC iterations. However, the importance weights in
this case are

∝ ∕  y yp y θ p y p y( ) ( ) ( )i
w

i i i
( )

−

and can be unstable which makes inference and
asymptotics for ELPD difficult. This occurs when
observation i is influential because the full posterior
predictive distribution yp y( )i is much different than the
LOO posterior predictive distribution yp y( )i i− resulting
in large or even infinite variance. In such cases, the
required number of MCMC draws to achieve conver-
gence with this estimator is much larger than W could
practically be. Pareto smoothed importance sampling can
be used to alleviate this issue, where the extreme values
of the importance weights are smoothed with a three‐
parameter generalized Pareto distribution (Vehtari
et al., 2017). This distribution is commonly used to
model tail behavior (Lee & Kim, 2019).

Additionally, the Pareto distribution gives a conver-
gence diagnostic k̂i for i n= 1, … , , each of which speaks
to the number of finite moments in the Pareto
distribution. If k̂ < 0.5i , then both the first and second
moment exist and so the usual Central Limit Theorem
applies to the calculation of ELPD. Vehtari et al. (2017)
suggest that ∈k̂ [0.5, 0, 7)i can also be used if W , the
number of MCMC samples, is large enough. However,
the threshold is set to be the lower value of 0.5 in this
analysis to ensure reliable ELPD estimates. When the
value of k̂i are too large for certain i, manual cross‐
validation is performed on those observations to
compute yp ylog{ ( )}i i− directly. For those i with
≤k̂ 0.5i , the values of yp ylog{ ( )}i i− from LOO‐PSIS

can be used. These estimates are then combined to yield
a value for  yp yELPD= log{ ( )}i

n
i i=1 − as desired.

Somewhat surprisingly, most samples in this analysis
provide converging estimates of yp y( )i i− for all i and so
the computational burden associated with cross‐
validation is greatly reduced using LOO‐PSIS. Funda-
mentally, ELPD is an information criterion that depends
on the likelihood of the model under examination and so
its interpretation, outside of higher being preferable, is
difficult. Therefore, the difference in ELPD is usually
used to choose among competing models. In this case,
these differences will be used to discover the genes whose
cis‐SNPs are most predictive of their expression levels

SPANBAUER ET AL. | 37



and also genes whose cis‐SNPs have informative func-
tional annotations.

Note that we do not aim to develop a decision rule
based on ELPD to select predictive genes and control for
multiplicities in this small analysis which focuses on
demonstrating the new logit‐normal prior. However, one
well‐known way to control for multiplicities is based on
controlling the false discovery rate, as in Muller et al.
(2006). These ideas are not considered in this article, but
incorporating them into larger analyses would be an
interesting area of future work, especially for statistical
genetics.

5.3 | Genome‐wide results

The probeset with the largest ELPD difference between
the null model and the standard BART model within a
single gene ID is used as the probeset for that gene ID.
Comparisons are made between the null model and
standard BART to assess predictive ability. Additionally,
comparisons are made between BART and the sparsity
priors to assess their ability to aid in prediction,
especially when the number of SNPs p is large. Finally,
prior LN‐0 is compared against prior LN‐A, assessing the
informativeness of the functional annotations. For genes

with helpful annotations, the coefficients of these
annotation models are presented.

First, standard BART is compared with the null
model to ascertain genes whose expression levels have
predictive SNPs in their cis‐region. The results for this
comparison are shown in the top left corner of Figure 4.
Each gene is indexed in terms of genomic position on the
horizontal axis, while the vertical axis represents the
ELPD difference between the null model and BART.
From this, several genes appear to have predictive SNPs
in terms of their expression levels. The top genes are
summarized in Table 3, top‐left. The most predictive
genes are those that belong to the human leukocyte
antigen (HLA) system that is responsible for regulating
the immune system. This system is known to affect many
autoimmune diseases such as celiac disease (Martina
et al., 2018), rheumatoid arthritis (Van Drongelen &
Holoshitz, 2017), and type I diabetes (Noble, 2015). The
relationship between the HLA system and autoimmune
diseases is furthered in the literature by Aguiar et al.
(2019). All of these genes were identified as possessing
predictive cis‐SNPs at the genome‐wide significance level
according to eQTLGen (Võsa et al., 2021), a large‐scale
resource that incorporates 37 data sets to estimate the p
values for the relationship between individual cis‐SNPs
and the expression levels.

FIGURE 4 The ELPD difference for each model comparison is visualized in this figure with higher ELPD difference indicating
preference to the more complicated model. The top‐left panel gives the results for the standard BART versus NULL comparison, the
top‐right panel gives the results for the LN‐A versus LN‐0 prior, the bottom‐right panel gives the results for the LN‐0 prior versus BART,
and finally the bottom‐left panel gives the results for DART versus BART.
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Next, the ability of the sparsity priors to aid in
prediction is assessed by comparing both DART and LN‐
0 to BART. The two bottom panels of both Figure 4 and
Table 3 present these results. Certain genes appear to
benefit from using sparsity priors, but the number of
genes is reduced compared to the BART versus null
comparison. Again, all of these genes contained predic-
tive cis‐SNPs at a genome‐wide significance level
according to eQTLGen. Gene FN1 has been implicated
in endometreiosis (Pagliardini et al., 2013) and ACTN3 is
well‐known to impact physical function (Pickering &
Kiely, 2017).

There were a small number of genes with informa-
tive annotations found, as evidenced from the top
right of Figure 4. The top genes from each model
comparison are presented in Table 3. All of the genes
listed have predictive cis‐SNPs according to eQTLGen.
The annotation coefficients and their 95% credibility
intervals are displayed in Table 4. Some of the
annotations only have one unique value for all of the
SNPs in the cis‐region of certain genes which is why
some estimates are missing. Only the SNP with the
highest ELPD contains a significant annotation at the
95% credibility level. However, this is unsurprising
given the relatively small sample size of the ADNI data
and does reflect the smaller ELPD difference for this
comparison. When looking at the mean ELPD differ-
ences between the informative annotation prior and
the sparsity priors (LN‐0 and DART), the mean

difference across all 16, 911 was 5.6 and 2.2, respec-
tively. This indicates that the annotation prior may
have been broadly useful across the genome, but the
benefit was slight based on the mean ELPD differ-
ences. The p values of a paired t‐test in this case were
miniscule (both being <1 × 10−8).

Finally, it may be useful to compare the ELPD
results from the different methods against each other.
Doing this can ascertain any systematic differences
between two of the methods. These results are
presented in Figure 5. Points above the red line on
the top row of this figure indicate genes that had
informative annotations when compared to LN‐0 and
DART on the left and right, respectively. This
describes a small amount of the genes searched.
Additionally, there are a small amount of genes lower
than the red line, suggesting a possible loss of power
when incorporating the annotations in select genes.
Overall, however, there does appear to be significant
agreement between LN‐0 and LN‐A for the vast
majority of genes. Therefore, the authors recommend
LN‐A unless it is known a priori that an annotation
may not be informative, which is rare. The bottom
right panel compares DART with LN‐0 and indicates
that there are no systematic differences between these
two priors as expected. The bottom left panel shows
a histogram of the number of cis‐SNPs among the
genes showing variety in the number of predictors
considered.

TABLE 3 Results from full genome scan presenting the five largest ELPD differences among the four model comparisons

BART versus null LN‐A versus LN‐0
Name Chr ELPD diff p Name Chr ELPD diff p

HLA‐DPB1 6 1300.4 238 FN1 2 70.1 165

HLA‐DQB1 6 1280.0 171 ACTN3 11 43.8 49

HLA‐C 6 1256.3 365 F3 1 25.5 87

HLA‐DQA1 6 1243.0 114 CEP70 3 24.8 37

BTLN3 5 860.9 40 CRABP1 15 23.8 124

DART versus BART LN‐0 versus BART

Name Chr ELPD diff p Name Chr ELPD diff p

CRABP1 15 5381.5 124 CRABP1 15 5370.0 124

LRGUK 7 1773.1 83 LRGUK 7 1769.4 83

CCDC85A 2 1024.5 350 CCDC85A 2 1014.0 350

RAB3C 5 842.3 302 RAB3C 5 827.3 302

MSLN 16 791.7 69 MSLN 16 781.7 69

Note: Although the ELPD difference for the DART versus BART and LN‐0 versus BART comparisons appear identical on the bottom, there are differences
throughout the entire set of genes. However, these differences are small.
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6 | DISCUSSION

Motivated by more informative and flexible modeling for
gene expression prediction as shown in our real data
example, this article has presented a novel logit normal
prior for sparse modeling situations with Bayesian
Additive Regression Trees that works as an alternative
to the standard BART prior or the Dirichlet prior. This
allows for prior information about the correlation
structure to be incorporated, in contrast to the Dirichlet
prior. Additionally, prior information about the predic-
tors, such as the functional annotations in our real data
example, can be seamlessly incorporated into the logit
normal framework. Tractable MCMC inference can be
performed using the PG augmentation strategy. Such
annotations may not be widely informative as our
analysis shows, but discovering informative annotations
to filter the cis‐SNPs of a gene to predict its expression
levels is a relevant question for statistical genetics.

In particular, as shown in our motivating real data
example, prediction using SNPs is an area where such a
prior is useful for several reasons. First, there are usually
many SNPs compared to the number of observations and
so a sparse prior can be beneficial. Second, the signals are
weak in the sense that the effect sizes of the SNPs are
typically small. Third, due to linkage disequilibrium,
there are high correlations among the nearby SNPs. Such
prior information could be incorporated to improve
estimation in the presence of linkage disequilibrium.
Hence, with the availability of many functional annota-
tions on the SNPs, how to most effectively incorporate
such informative priors into model building for predic-
tion becomes both challenging and useful. Related to
TWAS mentioned earlier, prediction can be particularly
useful in the context of instrumental variable (IV)

analysis, where SNPs can be used as instruments to
draw causal inference about some pair of traits. Of
course, this assumes that the IV assumptions are met and
so the selection of SNPs as the instruments in the first
stage becomes critically important for quality inference.
Using BART to estimate a Bayesian nonparametric IV
model with genetic data could be an interesting future
avenue. Additionally, if the correlation structure of the
predictors is known a priori, then it can be incorporated
into the prior specification of ψ. This results in pairs of
positively correlated predictors being selected together.
Whether or not this results in robustness to the problem
of predictor collinearity is an interesting topic to be
explored in the future.
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